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Shear viscosity of liquid mixtures: Mass dependence
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~Received 27 June 2002; revised manuscript received 8 April 2003; published 3 July 2003!

The expressions for zeroth, second, and fourth sum rules of the transverse stress autocorrelation function of
a two-component fluid have been derived. These sum rules and Mori’s memory function formalism have been
used to study the shear viscosity of Ar-Kr and isotopic mixtures. It has been found that the theoretical result is
in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear
viscosity for different mole fractions shows that deviation from ideal linear model comes even from the mass
difference in two species of the fluid mixture. At higher mass ratio, shear viscosity of the mixture is not
explained by any of the empirical models.
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I. INTRODUCTION

An appreciable progress has been made for studying
fusion, viscosity, and thermal conductivity of one-compon
fluids. This has become possible only due to the collec
efforts of experiments, theoretical studies, and compu
simulations. The transport properties of the two-compon
fluids have also been of interest among the physicists
chemists due to their composition dependence and more
cently from the point of view of glass transition. Extensi
computer simulation studies have been carried out to inv
tigate transport phenomena in Lennard-Jones fluid@1–3#,
soft sphere fluid@4#, and hard sphere fluid@5# mixtures. The
composition dependence of diffusion and shear viscosity
been one of the aims of these studies. The composition
pendence of shear viscosity of a binary mixture from th
retical point of view is not yet fully understood. There ex
models such as ideal linear model@6# and an exponentia
model@7# for composition dependence. But it has been fou
that there are deviations@3# from the predictions of these
models. Some microscopic theoretical studies, based
mode coupling approach@8# and kinetic theory approach@9#,
have also been made. Recently, Mukherjeeet al. @10# have
studied the composition dependence of shear viscosity
modeled binary mixture system. In this modeled system,
two species have the same mass and same size but diff
interaction strength. It is found that deviations from ideal
are enormous in such a system. In fact, in a real system
two species differ in mass, size, and interaction strength
multaneously. In the present work, we study equimolar Ar-
mixture and a composition dependence of shear viscosit
the modeled mixture in which the two species are allowed
have only different masses. Similar studies have been ca
out earlier@11,12# for self-diffusion coefficients, predicting
weaker mass dependence of self-diffusion in agreement
simulation studies@13,14#.

To study the shear viscosity of the mixture, we have u
the time correlation function approach coupled with t
Mori-Zwanzig memory function formalism. In this approac
memory function is the basic quantity to be determined. T
memory function can be calculated microscopically us
binary collision @15# and mode coupling theories@16#.
Though there already exists a microscopic expression@17#
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for the binary contribution, it has been derived only for
one-component system. Alternatively, one can study visc
ity coefficient by investigating the short time properties
transverse stress autocorrelation~TSAC! function and mod-
eled memory function. In the present work, we have deriv
zeroth, second, and fourth sum rules of TSAC functio
These expressions are quite general, applicable to any
component system, and involve partial pair and triplet cor
lation functions. These sum rules have been computed
merically for equimolar Ar-Kr mixture. The result obtaine
for shear viscosity is in good agreement with the compu
simulation result@1#. In order to investigate the effect o
mass on shear viscosity of the mixture, we have studied
ferent compositions for various mass ratios of the two s
cies. It has been found that even the mass difference in
two species leads to deviations from the empirical, linear a
exponential models.

The layout of the paper is as follows. In Sec. II, w
present theoretical formalism and derivation of expressi
for the sum rules of the TSAC function for a general tw
component system and an isotopic system. In Sec. III, res
and discussion are given. Section IV consists of brief su
mary and conclusion.

II. THEORETICAL FORMALISM

The Green-Kubo expression relating transverse stress
tocorrelation functionS(t) to viscosity@1# is given by

h5
1

kBTVE0

`

S~ t !dt, ~1!

wherekB , T, andV are the Boltzmann’s constant, absolu
temperature, and volume of the system, respectively. H
S(t) is defined as

S~ t !5^Jxy~ t !Jxy~0!&, ~2!

with

Jxy~ t !5(
i

N

@miv iy~ t !v ix~ t !1xi~ t !Fiy~ t !#. ~3!
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In the above equation,N(5N11N2) is the total number of
particles, labeled as 1 and 2.xi(t) and v ix(t) representx
component of position and velocity of thei th particle, re-
spectively, at timet. v iy(t) and Fiy(t) are, respectively,y
components of velocity and force at timet. The angular
brackets in Eq.~2! represent the ensemble average. T
TSAC function S(t) involves interactions among the lik
particles and the unlike particles.

It is not yet possible to calculateS(t) exactly for a system
of interacting particles. Therefore, we study the time evo
tion of the TSAC function by examining its short time pro
erties. The short time expansion ofS(t) is given as

S~ t !5S02S2

t2

2!
1S4

t4

4!
1•••, ~4!

whereS0 , S2, andS4 are called zeroth, second, and four
sum rules of the stress autocorrelation function, respectiv

A. Expressions for the sum rules

1. Two-component system

The zeroth sum rule of TSAC function@18# is defined as

S05^Jxy~0!Jxy~0!&. ~5!

Using Eq. ~3! for Jxy(0) and evaluating the canonical e
semble averages in the above equation, the expression
tained forS0 is

S05N~kBT!21
kBT

2 (
m,n51

2

nmNnE drgmn~r !x2Uyy
mn . ~6!

Here,nm denotes the number density of species labeled am.
gmn(r ) is the pair correlation function between the partic
of speciesm andn. In Eq. ~6! and what follows, we use the
notation

Ua1 ,a2 , . . .an

mn ~r !5
]nUmn~r !

]r a1
,]r a2

, . . . ,]r an

, ~7!

whereUmn(r ), in the above expression, is the pair potent
between the particles of speciesm andn. r an

is anth com-

ponent ofr . Clearly, expression forS0 contains interaction
among the like species and the unlike species of the t
component system.

The derivation of the second sum rule of the TSAC fun
tion for the two-component fluids requires the calculation
the ensemble average of the product of the time derivativ
dynamical variableJxy(t) at t50 with itself. It is defined as

S25^J̇xy~0!J̇xy~0!&, ~8!

whereJ̇xy represents the first time derivative of the dynam
cal variableJxy(t) and is given as

J̇xy~ t !5mv̇1x~ t !v iy~ t !12v ix~ t !Fiy~ t !1xi~ t !Ḟ iy~ t !, ~9!
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where v̇ ix(t) and Ḟ iy(t) are the first time derivatives o
v ix(t) and Fiy(t), respectively. From Eqs.~8! and ~9!, one
expectsS2 to involve four and five particle contributions
however, on use of Yvon theorem one finds thatS2 involves
static correlation upto three particles only. The express
obtained after lengthy but simple algebra is given as

S25~kBT!2 (
m,n51

2
nmNn

mm
E drgmn~r !@7Uyy

mn16xUyyx
mn

1~kBT!21x2~Uya
mn!2#1~kBT! (

m,n51

2
Nm

mm
nmnn

3E E drdr1g3~r ,r1!xx1Uyg
mnU1yg

mn , ~10!

where g3(r ,r1) is the static triplet distribution function
These results forS0 and S2 can also be obtained from th
second and fourth sum rules of the transverse current co
lation function obtained@18# for the two-component system

The fourth sum rule is defined as

S45^J̈xy~0!J̈xy~0!&. ~11!

The expression forS4 is expected to involve partial triple
and quadruplet distribution functions in addition to the p
correlation function. In the absence of knowledge of high
order partial correlation functions, we have restricted eva
ation of the expression of the sum rule only upto two-bo
terms. Triplet contribution to the fourth sum rule has be
estimated from the knowledge of the expression for o
component system, as explained in the Appendix. Howe
we have neglected the four-body contributions to the fou
sum rule as they are quite insignificant@19#. For example, by
neglecting four-body contributions in case of one-compon
system at triple point, the change in the value of viscosity
of the order of 2% for the density and temperature inve
gated here. The expression forS42 involving only the two-
body contributions thus obtained is given as

S425
~kBT!2

2 (
m,n51

2

nmNnS 1

mm
1

1

mn
D 2E drgmn~r !

3@9~kBT!Uxxyy
mn 116~Uya

mn!2120~Uxy
mn!2

115Uxx
mnUyy

mn110xUyya
mn Uxa

mn126xUxya
mn Uya

mn

13x2~Uyab
mn !21~kBT!21x2Uya

mnUyb
mnUab

mn#. ~12!

From S0 ,S2, andS42, respectively, given by Eqs.~6!, ~10!,
and ~12!, the already known expressions@19# for the one-
component system can be obtained when the number of
ticles of either species is put equal to zero.

2. Isotopic system

We consider here a system in which two species dif
only in their masses, withN1 particles having massm1 and
N2 particles having massm2. The study of such a system i
important to know the effect of mass and concentration
1-2
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shear viscosity. Analytical expressions for the mass and c
centration dependence of sum rules of the TSAC function
such an isotopic system are derived by allowing all partic
to interact with same pair potential. Substitutingg12(r )
5g12(r )5g22(r ) in Eq. ~6!, one finds that

S05N~kBT!21
kBT

2
NnE drg~r !x2Uyy . ~13!

This implies thatS0 does not depend on mass of the partic
and their concentration. Similarly, when the static correlat
function and the interaction among all the particles are sa
from Eqs.~10! and ~12!, the mass and concentration depe
dences ofS2(m1 ,m2) andS4(m1 ,m2), respectively, are ob
tained to be

S2~m1 ,m2!5Fc1
~12c!m1

m2
GS2~m1! ~14!

and

S42~m1 ,m2!5
1

2 F c~11c!1~12c!~22c!
m1

2

m2
2

12c~12c!
m1

m2
GS42~m1!, ~15!

wherec5N1 /N is the concentration of particles having ma
m1 . S2(m1) andS4(m1) are, respectively, given as

S2~m1!5
Nn~kBT!2

m1
3E drg~r !@7Uyy16xUyyx

1~kBT!21x2~Uya!2#

1
NkBTn2

m1
E E drdr1g3~r ,r1!xx1UygU1yg ,

~16!

and

S42~m1!5
2Nn~kBT!2

m1
2 E drg~r !@9~kBT!Uxxyy116~Uya!2

120~Uxa!2115UxxUyy110xUyyaUxa

126xUxyaUya13x2~Uyab!2

1~kBT!21x2UyaUybUab#. ~17!

The above expressions forS2(m1) and S42(m1) are exactly
the second and fourth~two body only! sum rules of the
TSAC function of the one-component system@19#.

B. Expression for shear viscosity

To calculate shear viscosity from the expression given
Eq. ~1!, one requires to know time evolution of the TSA
functionS(t). The exact evaluation of time evolution is po
sible only for a simplified description of atomic motion
01120
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Mori has shown, however, that time correlation functio
obey @20,21# an equation of motion that determines the
time evolution and is given by

dS~ t !

dt
52E

0

t

M1~ t2t!S~t!dt, ~18!

whereM1(t) is the first-order memory function defined as

M1~ t !5^ f 1~ t ! f 1* ~0!&/^u f 1~0!u2&, ~19!

with

f 1~ t !5exp~ iQ1L̃Q1t !Q1J. ~20!

HereQ1 is the operator projecting into the subspace ortho
nal to the variableJ(t) and L̃ is a Liouville operator. The
quantity most required, for the calculation of time evolutio
of the TSAC function from Mori’s equation, is the memor
function M1(t). Though there exist ways to calculateM1(t)
in binary collision approximation@17# and with the mode
coupling theory@20,21#, the binary part calculations are sti
not known for the two-component system interacting v
continuous interaction potential. On the other hand, sev
phenomenological forms@22,23# for the calculation ofM1(t)
have been proposed. Following earlier work which has p
vided @19,23# reasonably good estimates of shear viscos
for the one-component fluid, we choose

M1~ t !5a sech~bt!, ~21!

wherea5M1(t50)5S2 /S0 andb25(S4 /S2)2(S2 /S0), so
that S(t) satisfies sum rules upto the fourth order.

Defining Fourier-Laplace transform as

S̃~v!5 i E
0

`

exp~ ivt !S~ t !dt, ~22!

one obtains a relation for the time dependence ofS(t), given
as

S~ t !5
1

pE0

`

cos~vt !S9~v!dt, ~23!

whereS9(v) is the imaginary part ofS̃(v). Using Green-
Kubo expression@Eq. ~1!#, a general expression for the vis
cosity has been obtained, which is given by

h52
i

VkBT
S̃~v50!. ~24!

Using Eqs.~18!, ~21!, and~24!, and writinga andb in terms
of sum rules, we obtain an expression for the shear visco
given as

h5S 2

p D S n

kBTD S S4

S2
2

S2

S0
D 1/2S S0

2

S2
D . ~25!
1-3
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We will use this equation for the calculation of shear visc
ity, and expressions ofS0 , S2, andS4 to study the Ar-Kr and
isotopic mixtures.

III. RESULTS AND DISCUSSION

To calculate shear viscosity from the expression given
Eq. ~25!, one requires to compute the sum rulesS0 , S2, and
S4. The zeroth sum rule contains only the two-body term
whereas the expression forS2 contains two-as well as three
body terms. After carrying out the angular integrations
using analytical method, the sum rules have been comp
numerically. The angularly integrated expressions are gi
in the Appendix. The numerical computation of the sum ru
requires interatomic potential, partial pair, and triplet cor
lation functions as input. Presently, calculations have b
carried out for equimolar mixture of argon and krypton
using simulation data@3# for the partial pair correlation. The
interaction potential for such a system is Lennard-Jones
tential given as

U~r !54eF S s

r D 12

2S s

r D 6G . ~26!

In the above expression of the potential, the value ofe for
Ar-Ar is taken ase115120 K3kB , whereas for Kr-Kre22
5167 K3kB . The value of interatomic diameter for Ar-A
is s1153.405 Å and that for Kr-Kr iss2253.633 Å. For
interactions among the unlike particles, we have usede12

5Ae11e22 and s125(s111s22)/2. The mass density an
temperature of the system are, respectively, taken
1.84 g cm23 and 121.7 K, corresponding to the state whe
the simulation results forg(r ) are available. This thermody
namic state is close to the triple point. Numerical integ
tions have been carried out by using the Gauss quadra
method. The triplet contribution to the second and fou
sum rule has been evaluated using the method explaine
the Appendix. The values ofS0 , S22, S23, S42, andS43 for
Ar-Ar, Ar-Kr, and Kr-Kr are given in Table I. HereSnm rep-
resentsm-body contribution tonth sum rule. Using the val-
ues ofS0 ,S2, andS4 given in Table I, we obtainh522.31
31025 Pa s for the equimolar Ar-Kr mixture. The corre
sponding computer simulation value@1# is 23.631025 Pa s
for a system available forr51.91 gm cm23 and T
5120 K. The available corresponding experimental valu
@1# at c50.4 and 0.6 are, respectively, 27.231025 Pa s and
21.731025 Pa s. Thus we see that our method provide

TABLE I. Values of sum rulesS0 , S2, andS4. The value ofS0

is in the units of 10243 J2; S22 and S23 are in the units of
10217 J2 s22; and that ofS4 in the units of 1010 J2 s24.

Ar-Ar Ar-Kr Kr-Kr

S0 106.804 289.066 220.316
S22 70.948 195.546 140.615
S23 228.065 2107.272 255.138
S42 32.166 63.492 31.201
S43 26.131 224.247 24.891
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good description of the viscosity of the mixture of fluid a
can be judged from the comparison with the experimen
simulation data. This good quantitative agreement is just
incidental as one can see that by different choices of
memory functions, numerical estimates can be varied.
example, using Gaussian memory instead of hyperbolic
cant, the results for shear viscosity will be enhanced by ab
25%.

The shear viscosity of the Ar-Kr mixture as predicted
the linear relationship@6#

hmixture5~12c!hKr1chAr ~27!

is 27.631025 Pa s, which is higher by about 20% than th
computer simulation or our theoretical result. Here we ha
used@1# hAr515.631025 Pa s,hKr539.631025 Pa s. The
second relation@7# called exponential model determine
shear viscosity of the mixture, given by

hmixture5exp@~12c!ln hKr1c ln hAr#. ~28!

This predicts the value of the shear viscosity of the mixtu
to be 24.8531025 Pa s, which is closer to the calculate
simulation value than the value predicted by Eq.~28!. This
finding is in agreement with the earlier investigation@2#.

Mass and concentration dependence

In order to check the validity of the above linear an
exponential models, we will study here a system where
interactions among particles and the size of the particles h
been kept same. The sum rules forS0 , S2, andS4 given by
Eqs. ~13!, ~16!, and ~17! have been computed numerical
for pure Ar system atr51.19 gm cm23 and T5121.7 K.
The values of S0 , S2(m1), and S4(m1) are 535.578
310243 J2, 561.508310217 J2 s22, and 374.38331010

J2 s24, respectively. The mass and concentration dep
dences of sum rules for the isotopic system are obtai
from Eqs.~13!, ~14!, and~15!, respectively. The values of th
sum rules and Eq.~25! have been used to study the variatio
of viscosity with the mass and concentration for an isoto
fluid. Figure 1 shows the variation of viscosity with ma
ratio at different concentrations (c5N1 /N) of particles of
massm1 for an isotopic fluid. Using the fact that shear vi
cosity of a pure system varies as a square root of the m
the mass and concentration dependence of shear viscosit
an isotopic fluid using linear model is then given by

h5h0Fc1~12c!Am2

m1
G . ~29!

Here h0 is the viscosity of one-component system of pa
ticles with massm1 at c51. The mass and concentratio
dependence of the shear viscosity for an isotopic fluid
cording to the exponential model is given as

h5h0FAm2

m1
G (12c)

. ~30!
1-4
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The results obtained from Eqs.~29! and~30! are also shown
in Fig. 1. It is seen from the figure that atc50.25, the linear
model is able to explain the mass dependence but
m2 /m1,4. At higher mass ratio, the exponential mod
seems to be better. Atc50.75, the exponential model pre
dicts better results than linear model but only for small m
ratio. At higher mass ratio (.4), there is a significant depa
ture from both the models.

To underline reasons for this deviation, we examine
havior of S2 and S4 with changes in the concentration an
mass ratio. It is noted that with increase inm2 /m1 , S2 in-
creases linearly butS4 increases as a square of mass ratio
is evident from Eqs.~14! and ~15!. It is also found thatS4
does not follow the linear behavior with increase in conc
tration, whereasS2 increases linearly. To analyze the effe
of only S4 on shear viscosity, we also calculate the viscos
using only S0 and S2. The expression obtained forh by
assuming thatS(t)5S0 sech(A(S2 /S0)t), is given as

h5S p

2 D S n

kBTD S S0
3/2

AS2
D . ~31!

This for an isotopic system becomes

h5h0Fc1~12c!
m1

m2
G21/2

. ~32!

FIG. 1. Variation of the ratio of shear viscosity of an isotop
mixture to the shear viscosity of a one-component system, w
mass ratio of two species atc50.25 and 0.75. Solid circles ar
results from linear model and solid squares from the exponen
model. The solid lines are results from Eq.~25! and dotted lines are
results from Eq.~31!.
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The mass dependence obtained from this relation is
shown in Fig. 1 as dotted line. It can be seen from the fig
that by includingS4, one could improve the mass and co
centration dependence of shear viscosity.

IV. SUMMARY AND CONCLUSIONS

We have derived expressions for the first three nonvan
ing sum rules of the TSAC function, and evaluated the
numerically for a two-component system. Using these
pressions, coupled with Mori’s memory function formalism
we have calculated shear viscosity of equimolar Ar-Kr s
tem. It is found that our approach provides an estimate
shear viscosity close to the computer simulatio
experimental data. Further, it is found that the exponen
model predicts better results than the linear model in ag
ment with the earlier investigations. In order to underline t
reasons of deviation from the linear model, we have stud
the mass and concentration dependence of an isotopic
ture where the interactions among the like and the un
particles are assumed to be the same. The study of an is
pic system reveals that at large mass ratio there is a con
erable deviation from the ideal linear model. Thus, one c
cludes that deviations from the linear model in a real syst
can also be attributed to the mass difference in the two s
cies of a mixture. Further, for very large mass ratios there
deviations even from the exponential model. Thus, one fi
that two empirical models can be useful only when the t
species of a mixture are not very different in their masse
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APPENDIX

The angular integration of the sum rules of the TSA
function is done using the method explained earlier@19#. The
angularly integrated expression for zeroth sum rule is giv
as

S05N~kBT!21
2p~kBT!

15 (
m,n51

2

nmNnE
0

`

drgmn~r !r 4@Amnr 2

15Bmn#, ~A1!

whereB5(1/r )@]U(r )/]r # andA5(1/r )(]B/]r ). The sub-
scriptsmn on A andB imply that interaction is amongm and
n species of the system. The angularly integrated expres
of the two-body contribution to second sum rules is given

S225~kBT!2 (
m,n51

2
4pnmNn

mm
E

0

`

drgmn~r !r 2F7Bmn1
2

5
Cmnr 4

1
13

3
Amnr 21~15kBT!21r 2~Amn

2 r 415Bmn
2

12AmnBmnr 2!G , ~A2!

h

al
1-5
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whereC5(1/r )(]A/]r ). The term containing the three-bod
distribution function inS2 is angularly integrated using th
addition theorem which finally provides

S235
8p2kBT

15 (
m,n51

2
Nmnmnn

mm
E

0

`E
0

`

drdr8r 2r 82

3E
21

11

djg3
mng~r ,r 8!rr 8j@10BmnBmn8 12Amn8 Bmnr 82

12AmnBmn8 r 21AmnAmn8 r 2r 82~3j221!#, ~A3!

wherej is cosine of angle betweenr and r 8. Though there
exists superposition approximation for the calculation of tr
let contribution in a one-component system, it is not yet cl
how to extend it to a two-component system. For a tw
component system, atleast two of the three particles be
to the same species. Obviously, the correlation will be c
centration dependent. In this way, we propose for a tw
component system

g3
mnn~r ,r 8!5gmn~r !gmn~r 8!gnn~ ur 2r 8u!~xm1xndmn!.

~A4!

In this approximation, we have only taken care of concen
tion dependence and the possible combination of partial
relations. This approximation reduces to the already kno
Kirkwood superposition approximation when one of the s
cies is absent, and also for the isotopic system. This appr
mation is based upon the fact that the correlation betweem
andn species is direct, whereas correlation among the s
species is weaker and concentration dependent. The r
obtained using the approximation~A4! is given in Table I.

On the other hand if we writeS23 in reduced units, i.e.
length in terms ofs and energy in terms ofe, so the integral
involved is dimensionless. The expression thus obtaine
given as

S235
8p2kBT

15 (
m,n51

2
Nm

mm
nmnnemn

2 smn
2 I mn , ~A5!
tt
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where

I mn5E
0

`E
0

`

dr* dr8* r * 2r 8* 2E
21

11

djg3
mn~r ,r 8!r * r 8*

3j@10Bmn* Bmn8* 12Amn8* Bmn* ~r 8* !212Amn* Bmn8* ~r * !2

1Amn8* Amn* ~r * !2~r 8* !2~3j221!#. ~A6!

The superscript * means that the respective quantities ar
reduced units. We approximate the integrand to have
same value for all partial triplet correlation function, true
an isotopic system, but with their weighted values in terms
their different strength of potential (e) and atomic size
(s). The integralI mn has been calculated using the superp
sition approximation. The results obtained forS23

Ar-Ar ,
S23

Ar-Kr , S23
Kr -Kr are 224.558310217 J2 s22, 2104.460

310217 J2 s22, and 241.291310217 J2 s22, respectively.
These results are comparable with those obtained dire
and are given in Table I. Therefore, we estimate triplet c
tribution to the fourth sum rule in a similar manner and co
responding results are also given in Table I.

The angular integration of the fourth sum rule of th
TSAC function involving the two-body distribution functio
is given as

S425
2p~kBT!2

15 (
m,n51

2

nmNnS 1

mm
1

1

mn
D 2E

0

`

drgmn~r !r 2

3@9~kBT!~Dmnr 415 Amn110Cmnr 2!1294Amn
2 r 4

1465Bmn
2 1490AmnBmnr 2154AmnCmnr 6

136 BmnCmnr 41r 2~kBT!21~Amn
3 r 6

13 BmnAmn
2 r 413 AmnBmn

2 r 215 Bmn
3 !13Cmn

2 r 8#,

~A7!

where D5(1/r )(]C/]r ). Expressions given here are su
able for numerical integeration.
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